Copied to
clipboard

G = S3xC22:A4order 288 = 25·32

Direct product of S3 and C22:A4

direct product, metabelian, soluble, monomial, A-group

Aliases: S3xC22:A4, (C23xC6):6C6, C22:2(S3xA4), C24:9(C3xS3), (S3xC24):2C3, (C22xS3):2A4, (C2xC6):(C2xA4), C3:(C2xC22:A4), (C3xC22:A4):5C2, SmallGroup(288,1038)

Series: Derived Chief Lower central Upper central

C1C23xC6 — S3xC22:A4
C1C3C2xC6C23xC6C3xC22:A4 — S3xC22:A4
C23xC6 — S3xC22:A4
C1

Generators and relations for S3xC22:A4
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=g3=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, gcg-1=cd=dc, ce=ec, cf=fc, de=ed, df=fd, gdg-1=c, geg-1=ef=fe, gfg-1=e >

Subgroups: 1658 in 303 conjugacy classes, 24 normal (9 characteristic)
C1, C2, C3, C3, C22, C22, S3, S3, C6, C23, C32, A4, D6, C2xC6, C2xC6, C24, C24, C3xS3, C2xA4, C22xS3, C22xS3, C22xC6, C25, C3xA4, C22:A4, C22:A4, S3xC23, C23xC6, S3xA4, C2xC22:A4, S3xC24, C3xC22:A4, S3xC22:A4
Quotients: C1, C2, C3, S3, C6, A4, C3xS3, C2xA4, C22:A4, S3xA4, C2xC22:A4, S3xC22:A4

Character table of S3xC22:A4

 class 12A2B2C2D2E2F2G2H2I2J2K3A3B3C3D3E6A6B6C6D6E6F6G
 size 133333399999216163232666664848
ρ1111111111111111111111111    trivial
ρ2111-1111-1-1-1-1-11111111111-1-1    linear of order 2
ρ3111-1111-1-1-1-1-11ζ3ζ32ζ3ζ3211111ζ65ζ6    linear of order 6
ρ41111111111111ζ32ζ3ζ32ζ311111ζ32ζ3    linear of order 3
ρ51111111111111ζ3ζ32ζ3ζ3211111ζ3ζ32    linear of order 3
ρ6111-1111-1-1-1-1-11ζ32ζ3ζ32ζ311111ζ6ζ65    linear of order 6
ρ7222022200000-122-1-1-1-1-1-1-100    orthogonal lifted from S3
ρ8222022200000-1-1+-3-1--3ζ65ζ6-1-1-1-1-100    complex lifted from C3xS3
ρ9222022200000-1-1--3-1+-3ζ6ζ65-1-1-1-1-100    complex lifted from C3xS3
ρ103-1-13-1-13-13-1-1-130000-1-1-13-100    orthogonal lifted from A4
ρ113-133-1-1-1-1-13-1-130000-1-1-1-1300    orthogonal lifted from A4
ρ1233-1-3-1-1-1111-31300003-1-1-1-100    orthogonal lifted from C2xA4
ρ133-1-1-3-13-1-3111130000-13-1-1-100    orthogonal lifted from C2xA4
ρ143-1-133-1-1-1-1-1-1330000-1-13-1-100    orthogonal lifted from A4
ρ153-1-1-33-1-11111-330000-1-13-1-100    orthogonal lifted from C2xA4
ρ163-1-1-3-1-131-311130000-1-1-13-100    orthogonal lifted from C2xA4
ρ173-13-3-1-1-111-31130000-1-1-1-1300    orthogonal lifted from C2xA4
ρ1833-13-1-1-1-1-1-13-1300003-1-1-1-100    orthogonal lifted from A4
ρ193-1-13-13-13-1-1-1-130000-13-1-1-100    orthogonal lifted from A4
ρ206-2-20-26-200000-300001-311100    orthogonal lifted from S3xA4
ρ2166-20-2-2-200000-30000-3111100    orthogonal lifted from S3xA4
ρ226-2-206-2-200000-3000011-31100    orthogonal lifted from S3xA4
ρ236-2-20-2-2600000-30000111-3100    orthogonal lifted from S3xA4
ρ246-260-2-2-200000-300001111-300    orthogonal lifted from S3xA4

Smallest permutation representation of S3xC22:A4
On 36 points
Generators in S36
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 7)(2 9)(3 8)(4 10)(5 12)(6 11)(13 19)(14 21)(15 20)(16 22)(17 24)(18 23)(25 31)(26 33)(27 32)(28 34)(29 36)(30 35)
(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)

G:=sub<Sym(36)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11)(13,19)(14,21)(15,20)(16,22)(17,24)(18,23)(25,31)(26,33)(27,32)(28,34)(29,36)(30,35), (13,22)(14,23)(15,24)(16,19)(17,20)(18,21)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11)(13,19)(14,21)(15,20)(16,22)(17,24)(18,23)(25,31)(26,33)(27,32)(28,34)(29,36)(30,35), (13,22)(14,23)(15,24)(16,19)(17,20)(18,21)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,7),(2,9),(3,8),(4,10),(5,12),(6,11),(13,19),(14,21),(15,20),(16,22),(17,24),(18,23),(25,31),(26,33),(27,32),(28,34),(29,36),(30,35)], [(13,22),(14,23),(15,24),(16,19),(17,20),(18,21),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24)]])

Matrix representation of S3xC22:A4 in GL8(Z)

0-1000000
1-1000000
00100000
00010000
00001000
00000100
00000010
00000001
,
01000000
10000000
00-100000
000-10000
0000-1000
00000-100
000000-10
0000000-1
,
10000000
01000000
00100000
000-10000
0000-1000
00000100
00000010
00000001
,
10000000
01000000
00-100000
000-10000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000-100
00000010
0000000-1
,
10000000
01000000
00100000
00010000
00001000
00000100
000000-10
0000000-1
,
10000000
01000000
00010000
00001000
00100000
00000010
00000001
00000100

G:=sub<GL(8,Integers())| [0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;

S3xC22:A4 in GAP, Magma, Sage, TeX

S_3\times C_2^2\rtimes A_4
% in TeX

G:=Group("S3xC2^2:A4");
// GroupNames label

G:=SmallGroup(288,1038);
// by ID

G=gap.SmallGroup(288,1038);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-3,198,94,1271,516,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=g^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,g*c*g^-1=c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,g*d*g^-1=c,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

Export

Character table of S3xC22:A4 in TeX

׿
x
:
Z
F
o
wr
Q
<